A Paley-wiener Theorem for the Askey-wilson Function Transform
نویسندگان
چکیده
We define an analogue of the Paley-Wiener space in the context of the Askey-Wilson function transform, compute explicitly its reproducing kernel and prove that the growth of functions in this space of entire functions is of order two and type ln q−1, providing a Paley-Wiener Theorem for the Askey-Wilson transform. Up to a change of scale, this growth is related to the refined concepts of exponential order and growth proposed by J. P. Ramis. The Paley-Wiener theorem is proved by combining a sampling theorem with a result on interpolation of entire functions due to M. E. H. Ismail and D. Stanton.
منابع مشابه
Holomorphic Sobolev Spaces, Hermite and Special Hermite Semigroups and a Paley-wiener Theorem for the Windowed Fourier Transform
The images of Hermite and Laguerre Sobolev spaces under the Hermite and special Hermite semigroups (respectively) are characterised. These are used to characterise the image of Schwartz class of rapidly decreasing functions f on Rn and Cn under these semigroups. The image of the space of tempered distributions is also considered and a Paley-Wiener theorem for windowed ( short-time) Fourier tran...
متن کاملReal Paley-wiener Theorems for the Inverse Fourier Transform on a Riemannian Symmetric Space
The classical Fourier transform Fcl is an isomorphism of the Schwartz space S(Rk) onto itself. The space C∞ c (Rk) of smooth functions with compact support is dense in S(Rk), and the classical Paley-Wiener theorem characterises the image of C∞ c (R k) under Fcl as rapidly decreasing functions having an holomorphic extension to Ck of exponential type. Since Rk is self-dual, the same theorem also...
متن کاملA Paley-wiener Theorem for the Spherical Laplace Transform on Causal Symmetric Spaces of Rank 1 Nils Byrial Andersen and Gestur Olafsson
We formulate and prove a topological Paley-Wiener theorem for the normalized spherical Laplace transform deened on the rank 1 causal sym
متن کاملNonharmonic Gabor Expansions
We consider Gabor systems generated by a Gaussian function and prove certain classical results of Paley and Wiener on nonharmonic Fourier series of complex exponentials for the Gabor expansion. In particular, we prove a version of Plancherel-Po ́lya theorem for entire functions with finite order of growth and use the Hadamard factorization theorem to study regularity, exactness and deficienc...
متن کاملReal Paley–wiener Theorems and Local Spectral Radius Formulas
We systematically develop real Paley–Wiener theory for the Fourier transform on Rd for Schwartz functions, Lp-functions and distributions, in an elementary treatment based on the inversion theorem. As an application, we show how versions of classical Paley–Wiener theorems can be derived from the real ones via an approach which does not involve domain shifting and which may be put to good use fo...
متن کامل